Aktualności
Badania
25 Czerwca
Autor grafiki: J. Skowron/OGLE
Opublikowano: 2024-06-25

Czy czarne dziury tworzą ciemną materię? Niezwykłe odkrycie astronomów z UW

Czarne dziury mogą stanowić zaledwie znikomy procent ciemnej materii. Oznacza to, że należy szukać innego wytłumaczenia pochodzenia źródeł fal grawitacyjnych – wynika z wieloletnich badań zespołu naukowców pracujących w ramach projektu OGLE, prowadzonego w Obserwatorium Astronomicznym Uniwersytetu Warszawskiego. 

Obserwacje astronomiczne wskazują, że zwyczajna materia, którą możemy dotknąć lub zobaczyć, stanowi zaledwie 5% całkowitej masy i energii całego Wszechświata. W Drodze Mlecznej, na 1 kg materii zawartej w gwiazdach przypada 15 kg „ciemnej materii”, nieświecącej i oddziałującej wyłącznie za pośrednictwem grawitacji.

Natura ciemnej materii pozostaje wielką zagadką. Większość naukowców uważa, że składa się ona z nieznanych cząstek elementarnych – mówi dr Przemysław Mróz z Obserwatorium Astronomicznego Uniwersytetu Warszawskiego.

Problem w tym, że pomimo wielu dekad wysiłków, żaden eksperyment, na czele z eksperymentami prowadzonymi za pomocą Wielkiego Zderzacza Hadronów, nie doprowadziły do odkrycia nowych cząstek, które mogłyby tworzyć ciemną materię. Od 2015 roku, gdy dokonano pierwszej bezpośredniej obserwacji fal grawitacyjnych pochodzących od pary łączących się czarnych dziur, detektory LIGO i Virgo odkryły ponad 90 kolejnych takich zjawisk. Zauważono, że czarne dziury znajdowane za pomocą fal grawitacyjnych są znacznie bardziej masywne (typowo 20–100 mas Słońca) niż te znane wcześniej w Drodze Mlecznej (typowo 5–20 mas Słońca).

Wyjaśnienie, dlaczego te dwie populacje czarnych dziur tak bardzo się różnią, jest jedną z największych zagadek współczesnej astronomii – dodaje dr Mróz.

W jednym z możliwych rozwiązań tej zagadki, zasugerowano, że detektory fal grawitacyjnych znajdują tzw. pierwotne czarne dziury (primordial black holes), które mogłyby powstać na bardzo wczesnych etapach ewolucji Wszechświata. Istnienie pierwotnych czarnych dziur zostało zapostulowane ponad pół wieku temu przez słynnego brytyjskiego fizyka-teoretyka Stephena Hawkinga i, niezależnie, radzieckiego fizyka Jakowa Zeldowicza.

Wiemy, że młody Wszechświat nie był idealnie gładki – niewielkie fluktuacje gęstości dały początek obecnym galaktykom i gromadom galaktyk – tłumaczy dr Mróz.

Podobne fluktuacje gęstości, jeżeli miałyby dostatecznie dużą amplitudę, mogłyby się zapaść pod własnym ciężarem i utworzyć czarne dziury. Co więcej, od odkrycia fal grawitacyjnych, coraz częściej spekuluje się, że takie czarne dziury mogłyby potencjalnie odpowiadać za dużą część, jeśli nie całość, ciemnej materii we Wszechświecie.

Na szczęście hipotezę tę można zweryfikować za pomocą obserwacji astronomicznych. Wiadomo, że duże ilości ciemnej materii znajdują się również w naszej Drodze Mlecznej. Jeżeli więc założymy, że ciemna materia składa się z
masywnych czarnych dziur, powinniśmy je wykrywać w naszym najbliższym kosmicznym otoczeniu. Tylko jak to zrobić skoro czarne dziury nie świecą?

Z pomocą przychodzi ogólna teoria względności, sformułowana po raz pierwszy przez Alberta Einsteina, która przewiduje, że światło odległych gwiazd może być ugięte w polu grawitacyjnym masywnych obiektów. To tak zwane zjawisko mikrosoczewkowania grawitacyjnego.

Mikrosoczewkowanie zachodzi, jeżeli trzy obiekty – obserwator, źródło światła i obiekt-soczewka – ustawią się niemal dokładnie w jednej linii w przestrzeni – wyjaśnia prof. Andrzej Udalski, lider projektu OGLE. – Światło źródła może zostać ugięte i znacznie wzmocnione, obserwujemy jego tymczasowe pojaśnienie.

Czas trwania pojaśnienia zależy od masy soczewkującego obiektu: im jest ona większa, tym dłuższe zjawiska mikrosoczewkowania. W przypadku gwiazd o masie Słońca pojaśnienia trwają zwykle kilka miesięcy, w przypadku czarnych dziur stukrotnie większych niż Słońce – powinny trwać nawet kilka lat.

Sam pomysł zastosowania zjawisk mikrosoczewkowania do badania ciemnej materii nie jest nowy. Po raz pierwszy zaproponował to w latach osiemdziesiątych XX wieku słynny polski astrofizyk, prof. Bohdan Paczyński. Jego pomysł stał się inspiracją do powstania w kolejnej dekadzie trzech eksperymentów badających mikrosoczewkowanie – polskiego projektu OGLE, amerykańskiego MACHO i francuskiego EROS. Wyniki otrzymane w pierwszych fazach projektu OGLE, MACHO i EROS wskazywały, że czarne dziury o masach mniejszych niż jedna masa Słońca mogą tworzyć co najwyżej 10% ciemnej materii. Obserwacje te nie były jednak czułe na najdłuższe zjawiska mikrosoczewkowania, trwające po kilka lat, a więc na potencjalne masywne czarne dziury, takie jak odkrywa się obecnie za pomocą fal grawitacyjnych.

W najnowszej publikacji w Astrophysical Journal Supplement astronomowie z projektu OGLE prezentują niemal dwudziestoletnie obserwacje około 80 milionów gwiazd znajdujących się w sąsiedniej galaktyce, zwanej Wielkim Obłokiem Magellana i analizują występowanie zjawisk mikrosoczewkowania grawitacyjnego w tym kierunku. Dane pochodzą z trzeciej i czwartej fazy projektu OGLE i zostały zebrane w latach 2001–2020.

To najdłuższy, największy i najdokładniejszy ciąg czasowy obserwacji fotometrycznych Wielkiego Obłoku Magellana zebranych w historii współczesnej astronomii – przyznaje prof. Udalski.

W równoległej pracy opublikowanej w tygodniku Nature przedstawione są astrofizyczne konsekwencje uzyskanych rezultatów tych unikalnych obserwacji.

Gdyby cała ciemna materia składała się z czarnych dziur o masie 10 mas Słońca, powinniśmy byli wykryć łącznie 258 zjawisk mikrosoczewkowania – tłumaczy dr Mróz. – W przypadku czarnych dziur o masie 100 mas Słońca – 99 zjawisk, 1000 mas Słońca – 27 zjawisk.

Tymczasem astronomowie znaleźli w danych OGLE „zaledwie” 13 zjawisk mikrosoczewkowania. Co więcej, większość z nich była stosunkowo krótka, trwała mniej niż 100 dni. Ich szczegółowa analiza wykazała, że wszystkie mogły być spowodowane przez zwykłe gwiazdy w dysku Drogi Mlecznej lub w samym Wielkim Obłoku Magellana, a nie czarne dziury.

Wskazuje to, że masywne czarne dziury mogą stanowić co najwyżej niewielki ułamek ciemnej materii – podsumowuje dr Mróz.

Rzeczywiście, szczegółowe obliczenia pokazują, że czarne dziury o masie 10 mas Słońca mogą stanowić co najwyżej 1,2% ciemnej materii, 100 mas Słońca – 3,0% ciemnej materii, 1000 mas Słońca – 11% ciemnej materii.

Nasze obserwacje dowodzą więc, że pierwotne czarne dziury nie mogą jednocześnie być źródłami fal grawitacyjnych i tworzyć znaczącej części ciemnej materii – komentuje prof. Udalski.

Znacznie bardziej prawdopodobne są więc inne wyjaśnienia dużych mas czarnych dziur odkrywanych przez LIGO i Virgo. Jedna z takich hipotez zakłada, że powstały one w wyniku ewolucji masywnych gwiazd o niskiej zawartości ciężkich pierwiastków. Według innej, masywne czarne dziury powstały w wyniku łączenia się mniejszych obiektów w obszarach gęstych w gwiazdy (jak na przykład gromady kuliste).

Opublikowane prace to podsumowanie ponad 30-letnich działań projektu OGLE w zakresie badań ciemnej materii, której poszukiwanie było jednym z podstawowych motorów jego powstania – podsumowuje prof. Udalski. – Niewątpliwie prezentowane właśnie wyniki to nasze „opus magnum”, które wejdzie na długie lata do podręczników astronomii – dodaje.

W ramach projektu OGLE, który jest jednym z największych współczesnych przeglądów nieba, prowadzone są regularne obserwacje fotometryczne od ponad 32 lat. Jednym z pierwszych celów naukowych przeglądu OGLE było odkrycie i badanie zjawisk mikrosoczewkowania grawitacyjnego. Obecnie prowadzone badania dotyczą bardzo wielu dziedzin współczesnej astrofizyki – poszukiwania planet pozasłonecznych, badania struktury i ewolucji Drogi Mlecznej i sąsiednich galaktyk, gwiazd zmiennych, kwazarów, zjawisk przejściowych (gwiazd nowych, supernowych).

Projekt OGLE jest współfinansowany przez Ministerstwo Nauki i Szkolnictwa Wyższego, Fundację na rzecz Nauki Polskiej i Narodowe Centrum Nauki.

źródło: FUW

Artystyczna wizja zjawiska mikrosoczewkowania spowodowanego przez czarną dziurę (obserwowaną z Ziemi w stronę Wielkiego Obłoku Magellana)
Dyskusja (3 komentarze)
  • ~Marcin Przewloka 25.06.2024 09:31

    I takich wlasnie odkryc, taki historii naukowych, takich publikacji, potrzeba polskiej nauce.
    Fantastyczna sprawa.
    Gratulacje dla calego zespolu z przyleglosciami

    • ~Dario 29.06.2024 10:07

      Dokładnie. Ale zaraz jakiś Kowalski ci zarzuci że skoro nie wpływa to na jakość schabowego z ziemniakami to jest to odkrycie bez sensu

      • ~Marcin Przewloka 29.06.2024 19:40

        @Dario

        Tak, to prawda. Jednak tacy "Kowalscy" sa na calym swiecie, to nie tylko polska przypadlosc.

        Wydaje mi sie, ze ten kompletny brak zrozumienia tego, co to jest nauka, czym sie zajmuje, jak dziala i odtatecznie jak spoleczenstwa czerpia korzysci z nauk podstawowych, wynika z podstawowych brakow w edukacji. To wyszlo na jaw najmocniej w czasie ostatniej pandemii. Nie widze jednak zadnego wysilku, aby ta sytuacje zmienic, poprawic.