Przełomowe badania w dziedzinie obrazowania nowotworów głowy przeprowadzili fizycy z Uniwersytetu Jagiellońskiego. Wykorzystali do tego celu nowy parametr diagnostyczny – czas życia pozytonium. Aby móc go zobrazować w ciele pacjenta, konieczne było zbudowanie wyjątkowego na skalę światową urządzenia – tomografu modularnego z plastikowych scyntylatorów nazwanego J-PET (Jagielloński PET).
W przełomowym badaniu wykonanym pod kierunkiem prof. Pawła Moskala i prof. Ewy Stępień z Zakładu Fizyki Cząstek i jej Zastosowań w Instytucie Fizyki im. Mariana Smoluchowskiego Uniwersytetu Jagiellońskiego, we współpracy z prof. Leszkiem Królickim z Zakładu Medycyny Nuklearnej Uniwersyteckiego Centrum Klinicznego Warszawskiego Uniwersytetu Medycznego, wykorzystano unikalną technikę obrazowania pozytonium w tomografie J-PET.
Celem badania było kliniczne zastosowanie „biomarkera pozytonium” do obrazowania zmian chorobowych, oceny jakości obrazu i oceny ilościowej poprzez zmierzenie czasu życia atomu pozytonium w tkankach zdrowego mózgu i glejaka. Wynikiem tego badania jest pokazanie po raz pierwszy na świecie, że średni czas życia orto-pozytonium (o-Ps) w glejaku jest krótszy niż w zdrowym mózgu i wynosi 1,77 ns ± 0,58 ns. Dla zdrowej tkanki mózgowej średni o-Ps wynosi 2,72 ns ± 0,72 ns, co sugeruje potencjał wykorzystania obrazowania pozytonium w celu zwiększenia swoistości diagnostyki PET w patologii tkanek in vivo.
Glejak to najbardziej agresywny i złośliwy guz mózgu. Średni czas przeżycia chorego z rozpoznaniem glejaka wielopostaciowego, przy zastosowaniu obecnych standardów leczenia, to kilkanaście miesięcy. Mimo wielu badań naukowych przyczyny glejaka (etiologia) nie są do końca poznane. Wiadomo, że glejakom towarzyszą mutacje typowe dla większości nowotworów: TP53 i PTEN, ale nie mają one znaczenia prognostycznego. Zidentyfikowano także mutacje punktowe w genie EGFR. Wysoki odsetek glejaków wtórnych i bardzo mały odsetek glejaków pierwotnych ma mutacje w genie dehydrogenazy izocytrynianowej 1 (IDH1).
Kolejnym wyzwaniem dla klinicystów jest wczesna diagnostyka glejaka. Objawy neurologiczne, jakie towarzyszą rozwojowi tego guza, zależą głównie od jego lokalizacji w mózgu, co oznacza, że nie są typowe dla tej choroby. Nie ma też swoistego markera diagnostycznego dla glejaka. Wykorzystanie biomarkera PSMA – specyficznego antygenu ulegającego ekspresji w naczyniach tkanki nowotworowej, który jest pomocny w diagnostyce m.in. raka prostaty, w tym badaniu pozwoliło na lokalizację guza u obrazowanego pacjenta.
W skanerze J-PET zastosowano obrazowanie pozytonowe. Różni się ono od tradycyjnej pozytonowej emisyjnej tomografii (PET), w której wykorzystuje się zjawisko anihilacji elektronu (e-) pochodzącego z cząsteczek, z jakich zbudowane jest ciało pacjenta i pozytonu (e+) pochodzącego od radioizotopu emitującego promieniowanie pozytonowe (beta+) tym, że w skanerze J-PET mierzony jest dodatkowo czas życia atomu pozytonium. Ten egzotyczny atom powstaje w około 30–40% wszystkich anihilacji zachodzących w ciele pacjenta diagnozowanego za pomocą PET. Tradycyjne skanery PET obrazują tylko rozkład fotonów promieniowania gamma wytwarzanych w wyniku anihilacji elektronu (e-) i pozytonu (e+), bez pomiaru czasu tych zjawisk fizycznych.
Wcześniejsze artykuły opublikowane przez prof. Pawła Moskala i jego grupę badawczą pokazały, jak można wykorzystać średni czas życia pozytonium do badania tkanek prawidłowych i nowotworowych ex vivo i in vitro, wykorzystując technikę spektroskopii czasu życia pozytonium oraz technikę obrazowania pozytonium. Artykuł, który ukazał się w najnowszym numerze prestiżowego czasopisma fizycznego Science Advances opisuje pierwsze kliniczne zastosowanie czasu życia pozytonium do obrazowania tkanek. Badanie to wykonano u pacjenta z glejakiem wielopostaciowym mózgu, leczonego radioterapią cząstek α, za pomocą radiofarmaceutyku zawierającego radioaktywny izotop aktynu ([225]Ac) podawany bezpośrednio go guza. Jest to nie tylko przykład zastosowania obrazowania pozytonium w klinice, ale także przykład nowego podejścia do teranostyki nowotworów, czyli ścisłego połączenia diagnostyki i leczenia w celu dobrania do konkretnego pacjenta najskuteczniejszej, a jednocześnie bezpiecznej terapii.
Kliniczne zastosowanie „biomarkera pozytonowego” pod względem wykrywania zmian chorobowych, jakości obrazu i oceny ilościowej nie zostało jak dotąd określone, służyć ma temu niniejsze badanie.
Mariusz Kopiejka, źródło: UJ