Aktualności
Badania
10 Maja
Źródło: www.pg.edu.pl
Opublikowano: 2022-05-10

Stworzą technologię zwiększającą skuteczność radioterapii

Nad metodologią oraz technologią poprawiającą efektywność radioterapii hadronowej pracują naukowcy Politechniki Gdańskiej. Celem ich badań jest wypracowanie nowych rozwiązań dla klinik onkologicznych na całym świecie.

Zespołem badaczy kieruje dr inż. Marek Maryański, twórca jednej z najbardziej innowacyjnych metod obrazowania rozkładów 3D dawek promieniowania jonizującego w fantomach żelowych, która może mieć zastosowanie m.in. w radioterapii chorób nowotworowych. Metoda, polegająca na tomografii laserowej przeźroczystych fantomów żelowych (reprezentujących fragment ciała pacjenta), których barwa i gęstość ulegają lokalnym zmianom będącym miarą pochłoniętej dawki promieniowania, może znaleźć zastosowanie m.in. w weryfikacji precyzji naświetlań. Po ponad 30 latach spędzonych na pracy badawczo-rozwojowej w USA powrócił do swojej Alma Mater w ramach programu „Polskie Powroty” Narodowej Agencji Wymiany Akademickiej. Zajmie się opracowaniem metodologii oraz technologii poprawiającej efektywność radioterapii hadronowej.

Sukces radioterapii nowej generacji, która coraz powszechniej będzie używała protonów oraz cięższych cząstek jonizujących, wykazujących większą skuteczność biologiczną od najczęściej obecnie używanych fotonów rentgenowskich lub gamma, zależy w dużej mierze od zdolności do szybkiego i dokładnego pomiaru rozkładów przestrzennych dawek oraz innych istotnych parametrów. Zachodzi więc potrzeba, i jest to cel naszych badań, opracowania nowego typu dozymetrów-fantomów żelowych (symulujących tkanki ludzkie), uwzględniających zróżnicowanie w zależności od rodzaju promieniowania oraz rodzaju tkanki, np. mózgowej, mięśniowej, płucnej – tłumaczy dr inż. Marek Maryański, prof. PG z Instytutu Nanotechnologii i Inżynierii Materiałowej na Wydziale Fizyki Technicznej i Matematyki Stosowanej.

Wstępne wyniki badań dają nadzieję, że metoda weryfikacji precyzji naświetlań, nad którą pracuje jego zespół ma bardzo duże szanse powodzenia i wejdzie do klinik na całym świecie.

Już w ubiegłym roku, wraz z partnerami klinicznymi, opublikowaliśmy dowody testowe na to, że nasza metoda potrafi wykryć błędy przesunięcia „chmury dawki” nawet o 0,5 mm. Tak wysoka precyzja ma szczególne znaczenie, np. przy przerzutach nowotworowych w obrębie mózgu, gdzie zmiany potrafią być bardzo małe, liczne, rozsiane. Wystarczy pomylić się o milimetr i zmiana jest już tylko częściowo naświetlona, a zarazem uszkadzamy zdrową tkankę, którą może być np. nerw optyczny, pień mózgu czy inne organy krytyczne – podkreśla prof. Maryański.

Studenci badają właściwości nowych dozymetrów żelowych

W projekt zaangażowane są magistrantki specjalności fizyka medyczna na kierunku inżynieria biomedyczna. Marta Cichacka modeluje i bada mechanizmy nanostrukturalne odpowiedzi radiochromicznej dozymetrów żelowych pod wpływem promieniowania (próbki już latem mają być naświetlane m.in. wiązkami jonów helu i węgla na Uniwersytecie w Heidelbergu oraz neutronami w Narodowym Centrum Badań Jądrowych w Świerku). Sylwia Szczepańska analizuje dokładność metody pomiaru najważniejszych parametrów dozymetrycznych w terapii protonowej (zespół współpracuje w tym zakresie z Instytutem Fizyki Jądrowej PAN w Krakowie oraz z wiodącymi ośrodkami terapii protonowej na świecie). Natomiast Julia Leszczyńska analizuje możliwe metody skrócenia czasu skanu naświetlonych żeli w tomografie laserowym, który jest w tej chwili w stadium budowy w pracowni na wydziale.

Tomograf, który budujemy jest wystarczająco dokładny, ale wciąż zbyt powolny. Skanowanie kuli wielkości ludzkiej głowy ze zdolnością rozdzielczą ok. 1 mm zajmuje ok. 45 minut. Ambitnym celem jest skrócenie tego czasu do 2–5 minut, co ma ogromne znaczenie, jeśli myślimy o wprowadzeniu urządzenia do klinik – zaznacza prof. Maryański.

Z kolei studentki: Marta Cichacka, Julia Krzemińska, Anna Kusznerczuk i Klaudia Prusik będą badały fizyczne właściwości dozymetru, szukając odpowiedzi na pytania, które są krytyczne dla zastosowań, np. dotyczące warunków przechowywania, czułości, właściwości optycznych i mechanicznych. Ponadto grupa 15 studentów z koła naukowego BioPhoton weźmie udział we wstępnej integracji całego układu pomiarowego, złożonego z dozymetrycznych fantomów żelowych, tomografu laserowego oraz oprogramowania sterującego skanem, rekonstruującego obraz 3D, porównującego dane pomiarowe z planem leczenia oraz generującego zwięzły raport końcowy dla fizyków medycznych odpowiedzialnych za dokładność naświetlań pacjentów w klinikach onkologii radiacyjnej.

Współpraca z wiodącymi ośrodkami

W planach jest utworzenie międzynarodowego konsorcjum (Polska, USA, Belgia) skupionego na dwóch nurtach nowoczesnej terapii protonowej: FLASH therapy oraz ARC-proton therapy. Pierwsza z nich to terapia umożliwiająca precyzyjne dostarczenie całej dawki terapeutycznej w skrajnie krótkim czasie, rzędu 0,1 sek. Zespół badawczy z PG współpracuje w zakresie tej techniki z pionierskim ośrodkiem University of Pennsylvania w Filadelfii (USA).

Druga technika, ARC-proton therapy, to zastosowanie metody precyzyjnie kontrolowanego obrotu źródła wiązki promieniowania wokół obszaru nowotworu w celu jak najlepszego dopasowania „chmury dawki” do kształtu zmiany nowotworowej. Jest to w radioterapii protonowej metoda eksperymentalna i jedyny szpital na świecie, gdzie funkcjonuje prototyp urządzenia to William Beaumont Hospital w Michigan, z którym współpracujemy. Niedawno wysłaliśmy tam pierwsze próbki do naświetlania – mówi prof. Maryański.

Trzecim ośrodkiem partnerskim jest Université Catholique de Louvain w Belgii, który sąsiaduje i ściśle współpracuje z firmą Ion Beam Applications, pionierem i światowym liderem w zakresie produkcji cyklotronów do terapii protonowej. Zespół prof. Maryańskiego współpracuje także z krajowymi partnerami klinicznymi: Zakładem Fizyki Medycznej na Oddziale Onkologii i Radioterapii Uniwersyteckiego Centrum Klinicznego w Gdańsku, z Centrum Onkologii w Bydgoszczy oraz jedyną w Polsce kliniką terapii protonowej przy Instytucie Fizyki Jądrowej PAN w Bronowicach koło Krakowa.

źródło: PG

 

Dyskusja (0 komentarzy)