Drobiny złota o rozmiarach miliardowych części metra są zabójcze dla komórek nowotworowych. To wiadomo od dawna, podobnie jak znana jest korelacja wielkości nanocząstek do czasu, w jakim komórki giną. Z najświeższych badań, przeprowadzonych w Instytucie Fizyki Jądrowej PAN z użyciem nowatorskiej techniki mikroskopowej, wyłania się jednak bardziej złożony obraz tych interakcji.
Mniejsze zabijają szybciej – tak dotychczas myślano o nanocząstkach złota używanych do zwalczania komórek nowotworowych. Naukowcom wydawało się bowiem, że małym nanocząstkom po prostu łatwiej wniknąć do wnętrza komórki rakowej, gdzie ich obecność miała prowadzić do zaburzeń metabolizmu i ostatecznie do śmierci komórki. Rzeczywistość okazała się jednak być bardziej złożona, czego dowiodły badania naukowców z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie, wsparte analizą teoretyczną wykonaną na Uniwersytecie Rzeszowskim i Politechnice Rzeszowskiej.
Prowadzimy nowoczesne centrum medyczno-akceleratorowe przeznaczone do radioterapii protonowej. Gdy więc kilka lat temu pojawiły się doniesienia, że nanocząstki złota mogą być dobrymi radiouczulaczami i wzmacniać efektywność takiej terapii, zaczęliśmy sami je syntetyzować i sprawdzać ich oddziaływanie z komórkami nowotworowymi. Szybko się przekonaliśmy, że toksyczność nanocząstek nie zawsze była zgodna z oczekiwaniami – tłumaczy dr hab. inż. Joanna Depciuch-Czarny z IFJ PAN.
Nanocząstki można wytwarzać wieloma metodami, otrzymując drobiny o różnych rozmiarach i kształtach. Wkrótce po rozpoczęciu własnych eksperymentów z nanocząstkami złota krakowscy fizycy zauważyli, że biologia nie stosuje się do popularnej reguły mówiącej, iż toksyczność tychże jest tym większa, im są one mniejsze. Wyprodukowane w Krakowie sferyczne nanocząstki o rozmiarach 10 nanometrów okazały się praktycznie nieszkodliwe dla badanej linii komórkowej glejaka. Wysoką śmiertelność zauważono natomiast wśród komórek wystawionych na działanie nanocząstek aż 200-nanometrowych, tyle że o budowie gwiaździstej.
Wyjaśnienie stwierdzonej sprzeczności stało się możliwe dzięki użyciu pierwszego w Polsce mikroskopu holotomograficznego, zakupionego przez IFJ PAN ze środków Ministerstwa Nauki i Szkolnictwa Wyższego. Typowy tomograf komputerowy skanuje ludzkie ciało za pomocą promieniowania rentgenowskiego i przekrój po przekroju odtwarza jego przestrzenną strukturę wewnętrzną. W biologii od niedawna podobną funkcję spełnia właśnie mikroskop holotomograficzny: komórki są tu także omiatane wiązką promieniowania, ale nie wysokoenergetycznego, tylko elektromagnetycznego. Jego energia jest tak dobrana, by fotony nie zaburzały metabolizmu komórek. Rezultatem skanowania jest zbiór holograficznych przekrojów zawierający informację o rozkładzie zmian współczynnika załamania światła. A ponieważ światło inaczej załamuje się na cytoplazmie, a inaczej na błonie komórkowej czy jądrze komórkowym, można na tej podstawie odtworzyć trójwymiarowy obraz zarówno samej komórki, jak i jej wnętrza.
W przeciwieństwie do innych wysokorozdzielczych technik mikroskopowych, holotomografia nie wymaga preparowania próbek ani wprowadzania do wnętrza komórek żadnych obcych substancji. Interakcje nanocząstek złota z komórkami rakowymi mogliśmy więc obserwować bezpośrednio w inkubatorze, gdzie te ostatnie były hodowane, w niezaburzonym środowisku, do tego z rozdzielczością nanometryczną, ze wszystkich stron jednocześnie i praktycznie w czasie rzeczywistym – wylicza dr Depciuch-Czarny.
Unikatowe cechy holotomografii pozwoliły krakowskim fizykom ustalić przyczyny nieoczekiwanych zachowań komórek nowotworowych w obecności nanocząstek złota. Serie doświadczeń przeprowadzono na trzech liniach komórkowych: dwóch glejaka i jednej jelita grubego. Zauważono między innymi, że co prawda małe, sferyczne nanocząstki łatwo wnikały do wnętrza komórek rakowych, ale te mimo początkowego stresu się regenerowały, a nawet zaczynały się ponownie dzielić. Natomiast w przypadku komórek nowotworowych jelita grubego nanocząstki złota szybko były z nich wypychane. Sytuacja wyglądała inaczej w przypadku dużych nanocząstek o kształcie gwiaździstym. Ich ostre zakończenia dziurawiły błony komórkowe, co najprawdopodobniej skutkowało narastaniem stresu oksydacyjnego we wnętrzu komórek. Gdy te przestawały sobie radzić z naprawami coraz liczniejszych szkód, uruchamiał się mechanizm apoptozy, czyli programowanej śmierci.
Dane z krakowskich eksperymentów użyliśmy do budowy modelu teoretycznego procesu osadzania się nanocząstek we wnętrzu badanych komórek. Efektem końcowym jest równanie różniczkowe, do którego można podstawić odpowiednio przetworzone parametry – na razie opisujące tylko kształt i rozmiar nanocząstek – by szybko ustalić, jak w założonym czasie będzie przebiegała absorpcja analizowanych nanocząstek przez komórki nowotworowe – wyjaśnia dr hab. Paweł Jakubczyk z Uniwersytetu Rzeszowskiego, współtwórca modelu. – Każdy naukowiec już teraz może wykorzystać nasz model na etapie projektowania własnych badań, by błyskawicznie zawęzić liczbę wariantów nanocząstek wymagających weryfikacji eksperymentalnej.
Możliwość łatwej redukcji liczby potencjalnych doświadczeń do przeprowadzenia oznacza zmniejszenie kosztów związanych z zakupem linii komórkowych i odczynników, a także wyraźne skrócenie czasu badań (samo rozhodowanie komercyjnie dostępnej linii komórkowej trwa zazwyczaj około dwóch tygodni). Model można ponadto użyć do projektowania lepiej niż dotychczas celowanych terapii – takich, w których nanocząstki będą szczególnie dobrze absorbowane przez wybrane komórki nowotworowe przy zachowaniu względnie niskiej lub wręcz zerowej toksyczności wobec zdrowych komórek w pozostałych narządach pacjenta.
Krakowsko-rzeszowska grupa naukowców przygotowuje się już do kontynuowania badań. Wkrótce nowe eksperymenty powinny umożliwić rozbudowę modelu oddziaływania nanocząstek z komórkami rakowymi o dalsze parametry, takie jak skład chemiczny nanocząstek czy kolejne rodzaje nowotworów. W późniejszych planach znajduje się również uzupełnienie modelu o elementy matematyczne służące optymalizowaniu efektywności foto- czy protonoterapii dla wskazanych kombinacji nanocząstek i nowotworów.
MK, źródło: IFJ PAN