Aktualności
Badania
29 Czerwca
Fot.: S. Kurzyna, B. Niewelt
Opublikowano: 2023-06-29

Studenci UW odwrócili kota Schrödingera ogonem

Studenci Wydziału Fizyki Uniwersytetu Warszawskiego i naukowcy z Centrum Optycznych Technologii Kwantowych QOT opracowali innowacyjną metodę, która pozwala na dokonywanie cząstkowej transformaty Fouriera impulsów optycznych, wykorzystując do tego pamięć kwantową. Polski zespół jako pierwszy na świecie przedstawił doświadczalną implementację wspomnianej transformacji w tego typu układach.

Fale, takie jak światło, posiadają swoje charakterystyczne właściwości – czas trwania impulsu oraz częstotliwość (odpowiadającą w przypadku światła jego barwie). Okazuje się, że cechy te związane są ze sobą poprzez operację zwaną transformatą Fouriera, umożliwiającą przechodzenie z opisu fali w czasie na opis jej widma w częstotliwościach.

Cząstkowa transformata Fouriera jest uogólnieniem transformaty Fouriera umożliwiającym częściowe przejście od opisu fali w czasie do opisu w częstotliwości. Intuicyjnie można ją rozumieć jako obrót rozkładu (na przykład chronocyklicznej funkcji Wignera) rozważanego sygnału o pewien kąt w domenie czasowo-częstotliwościowej. Okazuje się, że transformacje tego typu są niezwykle użyteczne przy projektowaniu specjalnych filtrów spektralno-czasowych eliminujących szum oraz umożliwiają stworzenie algorytmów pozwalających na wykorzystanie kwantowej natury światła do rozróżniania impulsów o różnych częstotliwościach precyzyjniej niż tradycyjne metody. To szczególnie ważne w spektroskopii, która pomaga badać własności chemiczne materii, oraz telekomunikacji, która wymaga przekazywania i przetwarzania informacji z wysoką precyzją i szybkością.

Soczewki i transformata Fouriera?

Zwykła szklana soczewka jest w stanie skupić padającą na nią monochromatyczną wiązkę światła do niemalże pojedynczego punktu (ogniska). Zmiana kąta padania światła na soczewkę skutkuje zmianą położenia ogniska. Dzięki temu możemy zamienić kąty padania na położenia, uzyskując analogię transformacji Fouriera, w przestrzeni kierunków i położeń. Klasyczny spektrometr bazujący na siatce dyfrakcyjnej wykorzystuje ten efekt, żeby przekształcić informację o długości fali światła na położenia, pozwalając na rozróżnienie między liniami spektralnymi.

Soczewki czasowe i częstotliwościowe

Analogicznie jak w przypadku soczewki szklanej, soczewki czasowe i częstotliwościowe pozwalają na zamianę czasu trwania impulsu na jego rozkład widma, czyli w efekcie wykonują transformatę Fouriera w przestrzeni czasu i częstotliwości. Odpowiednie dobranie mocy takich soczewek pozwala na wykonanie cząstkowej transformaty Fouriera. W przypadku impulsów optycznych działanie soczewek czasowych i częstotliwościowych odpowiada nałożeniu na sygnał kwadratowych faz.

Do przetworzenia sygnału badacze wykorzystali pamięć kwantową – a właściwie pamięć wyposażoną dodatkowo w elementy procesora światła kwantowego – opartą na chmurze atomów rubidu umieszczonej w pułapce magnetooptycznej. Atomy schłodzono do temperatury rzędu kilkudziesięciu milionowych stopnia powyżej zera absolutnego. Pamięć była umieszczona w zmieniającym się polu magnetycznym, co pozwoliło na zapisanie składowych o różnych częstotliwościach w różnych częściach chmury atomów. Impuls w trakcie zapisu i odczytu był poddany operacji soczewki czasowej, a w trakcie przechowywania działała na niego soczewka częstotliwościowa.

Urządzenie powstałe na UW pozwala na implementację takich soczewek w bardzo szerokim zakresie parametrów i  w programowalny sposób. Podwójny impuls jest bardzo podatny na dekoherencję, stąd często porównuje się go do słynnego kota Schrödingera – stanu makroskopowej superpozycji bycia martwym i żywym, praktycznie niemożliwego do osiągnięcia eksperymentalnie. Mimo to zespołowi udało się zaimplementować wierne operacje na tych delikatnych stanach podwójnego impulsu.

Przed bezpośrednim zastosowaniem w telekomunikacji metoda musi być najpierw zmapowana na inne długości fali i zakresy parametrów. Cząstkowa transformata Fouriera może okazać się jednak kluczowa w odbiornikach optycznych w najnowocześniejszych sieciach, między innymi w przypadku optycznej komunikacji satelitarnej. Procesor światła kwantowego opracowany na UW pozwala znajdować i testować takie nowe protokoły w efektywny sposób.

Badania pod kierunkiem dr. hab. Michała Parniaka i dr. hab. Wojciecha Wasilewskiego przeprowadzono w Centrum Optycznych Technologii Kwantowych QOT UW, znajdującym się w CeNT  – Centrum Nowych Technologii. Wyniki opublikowało prestiżowe czasopismo Physical Review Letters.

źródło: FUW

Dyskusja (0 komentarzy)