Budowa innowacyjnej instalacji wodorowej, nowy prototyp elektrolizera i alternatywne metody przechowywania i transportu wodoru – to główne obszary badań, które będą realizowane w tworzonym właśnie w Politechnice Gdańskiej międzywydziałowym laboratorium H2Tech LAB „Laboratory of Hydrogen Technologies”.
Laboratorium powstanie w efekcie integracji istniejącej infrastruktury B+R jaką jest Laboratorium Linte^2 oraz nowych infrastruktur rozwijanych w ramach trzech niezależnych projektów:
Projekty wpisują się w unijne i polskie strategie wodorowe, które przewidują, że odnawialny wodór odegra kluczową rolę w dekarbonizacji sektorów przemysłowych i energetycznych. Wyniki stworzą także istotne wsparcie dla prac B+R w zakresie technologii wodorowych realizowanych na PG. Pozwolą na intensyfikację współpracy naukowej oraz B+R i wsparcie rozwoju kadry naukowej. H2Tech LAB bez wątpienia zwiększy widoczność kompetencji wodorowych PG w przestrzeni publicznej.
Wytwarzanie wodoru, prototypy i testy dla przemysłu
Głównym celem projektu Gdańsk Tech HEST jest budowa innowacyjnej instalacji wodorowej do celów B+R. Odnawialny wodór będzie produkowany przez przemysłowe elektrolizery zasilane odnawialną energią elektryczną, która jest generowana w elektrowni fotowoltaicznej w Laboratorium LINTE^2. Wodór będzie wykorzystywany przez inne moduły H2Tech LAB, a także przez klientów przemysłowych. Ważną częścią projektu będzie również rozwój usług badawczych w zakresie testowania i diagnostyki wodorowych ogniw paliwowych. Oczekuje się, że usługa będzie bardzo atrakcyjna dla potencjalnych partnerów przemysłowych – podkreśla prof. Robert Małkowski.
Drugi z projektów, prowadzony pod kierownictwem prof. Sebastiana Molina, zakłada opracowanie prototypu stosu elektrolizera o mocy powyżej 1000 W do wydajnego wytwarzania wodoru z wody, w szczególności z wykorzystaniem odnawialnych źródeł energii. Urządzenie skonstruowane zostanie z wykorzystaniem dostępnych komercyjnie nowoczesnych membran przy zastosowaniu nanomateriałów elektrodowych opracowanych w Laboratorium Materiałów Funkcjonalnych WETI. Nowe materiały elektrodowe nie zawierają drogich pierwiastków z grupy platyny, co umożliwi obniżenie kosztów urządzeń. Modułowa konstrukcja elektrolizera umożliwi skalowanie mocy systemu poprzez zwiększenie ilości ogniw lub połączenie wielu urządzeń. Stworzony prototyp będzie gotową platformą do zastosowania w systemach elektrolizy np. w magazynach energii. Wytworzony wodór będzie można przechowywać w zbiornikach ciśnieniowych i sprawdzać warunki pracy przy zmiennych źródłach zasilania.
Magazynowanie i transport wodoru
Chociaż niskoemisyjność i wysoka wydajność energetyczna powodują, że wodór jest atrakcyjnym paliwem, to ma on również niekorzystne właściwości fizykochemiczne: wysoka dyfuzyjność, korozyjność i wybuchowość. Klasycznie wodór magazynuje się w butlach stalowych pod ciśnieniem rzędu 200 atm, możliwe jest też jego przechowywanie i transport w zbiornikach kompozytowych w ciśnieniach nawet do 700 atm. Jednak jest to rozwiązanie niezwykle drogie. Druga możliwość to obniżenie temperatury do kilku stopni kelwina, by uzyskać wodór w postaci ciekłej. W takim stanie skupienia gaz przechowuje się w tzw. naczyniu Dewara (czyli w zasadzie w specyficznym termosie) z odpowiednią izolacją zapobiegającą szybkiemu wyparowaniu. Jednak ciekły wodór cały czas wrze i zachodzi potrzeba odprowadzania uwalnianego wciąż gazu. Obydwa rozwiązania są kłopotliwe.
Alternatywą dla przechowywania i transportu wodoru w postaci sprężonej może być magazynowanie go w pewnych rodzajach związków chemicznych – przekonuje prof. Jacek Gębicki, dyrektor Centrum Technologii Wodorowych na PG. – Takich związków jest dużo, ale w tym projekcie będziemy używać powszechnieznanego metanolu, który jest bardzo często wykorzystywany w różnych procesach petrochemicznych. Metanol jest, kolokwialnie mówiąc, bezpiecznym magazynem dla wodoru i substancją znacznie bezpieczniejszą do przewożenia, ponieważ jest to ciecz. Również proces odzyskiwania wodoru z metanolu nie jest skomplikowany – dodaje.
W laboratorium H2Tech Lab będzie się odbywał proces syntezy metanolu z wykorzystaniem odpadowego dwutlenku węgla oraz proces odwrotny – odzyskiwania wodoru przez reforming parowy.
W obu tych procesach potrzebne są specjalne katalizatory – tłumaczy prof. Gębicki – Na bazie wcześniejszych doświadczeń chcemy zaprojektować modyfikację dostępnych i używanych już katalizatorów, tak aby zostały obniżone parametry procesowe. Synteza metanolu odbywa się w temperaturze poniżej 300 stopni i około 60-70 barów, natomiast dzięki zastosowaniu nowego typu katalizatorów wartości te zostaną wyraźnie zredukowanie. Zmniejszy to koszty energetyczne całego procesu i zwiększy nie tylko opłacalność technologii, ale również jej prośrodowiskowy charakter.
H2Tech LAB pozwoli też na prowadzenie testów rozwiązań komercyjnych. Możliwe będą testy zarówno poszczególnych elementów, jak i kompleksowych rozwiązań opartych na technologii wodorowej np. magazynów energii. H2Tech LAB będzie też ważnym, praktycznym elementem w procesie kształcenia specjalistycznej kadry. Realizacja wszystkich trzech projektów i powstanie laboratorium przewidywana jest na dwa lata.
źródło: PG